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Homework 0.1 (Warmup). Give an example of the following objects or show they cannot
exist, respectively.

a. A holomorphic function 𝑓 : C \ {0} → C such that 𝑓 ′ (𝑧) = 1/𝑧.
b. A holomorphic function 𝑓 : C \ {ℜ ≤ 0} → C with 𝑓 ′ (𝑧) = 1/𝑧? Here {ℜ ≤ 0}

designates the set of all complex numbers with nonpositive real part.
c. A domain 𝐷 ⊂ C and a nonconstant holomorphic function 𝑓 : 𝐷 → C such that

| 𝑓 | is constant.
d. A nonconstant holomorphic function 𝑓 : C → C such that 𝑓 (𝑛) = 0 for every
𝑛 ∈ N.

e. A nonconstant holomorphic function 𝑓 : C → C such that 𝑓 (i + 1/𝑛) = 0 for every
𝑛 ∈ N.

f. A nonconstant holomorphic function 𝑓 : C \ {0} → C that is bounded.

Solution. a. No. Otherwise, by the fundamental theorem of calculus and the definition of
complex path integrals we would obtain the contradiction

0 = 𝑓 (1) − 𝑓 (1) =
∫
𝜕𝐵1 (0)

𝑓 ′ (𝑧) d𝑧 =
∫ 2𝜋

0
e−i𝑡 ei𝑡 i d𝑡 = 2𝜋 i.

b. Yes. On star-shaped domains every holomorphic function possesses a primitive. One
function is the complex logarithm given by 𝑓 (𝑧) := log(𝑧) (more precisely, its principal
value with imaginary part in (−𝜋, 𝜋]).

c. No. Such a function would satisfy 𝑓 (𝐷) ⊂ 𝜕𝐵𝑟 (0) for some 𝑟 ≥ 0. In particular, the
set 𝑓 (𝐷) is not open, which contradicts the open mapping theorem.

d. Yes. Consider the function given by 𝑓 (𝑧) := sin(𝜋𝑧).
e. No. As the sequence (i + 1/𝑛)𝑛∈N has the accumulation point i the identity theorem

yields 𝑓 (𝑧) = 0 for every 𝑧 ∈ C.
f. No. Since the origin 0 is an isolated singularity, Riemann’s lemma implies it is a

removable singularity, hence 𝑓 can be extended to 0. However, the resulting extension is
still bounded yet nonconstant, contradicting Liouville’s theorem.

Homework 0.2 (Image of entire functions). Let 𝑓 : C → C be an non-constant entire
function (i.e. 𝑓 is holomorphic on the entire complex plane). Show 𝑓 (C) is dense in C1.

Solution. Assume 𝑓 (C) is not dense in C. Then there exists 𝑧0 ∈ C which cannot be
approximated by a sequence in 𝑓 (C); that is (check this logical step on your own), there
exists 𝛿 > 0 with | 𝑓 (𝑧) − 𝑧0 | > 𝛿 for every 𝑧 ∈ C. Then the function 𝑔 : C → C given by

𝑔(𝑧) :=
1

𝑓 (𝑧) − 𝑧0
satisfies |𝑔(𝑧) | ≤ 1/𝛿. Hence by Liouville’s theorem 𝑔 has to be constant, which contradicts
the assumption that 𝑓 is nonconstant.
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1Hint. Argue by contradiction and use Liouville’s theorem for a suitable function.
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Homework 0.3 (Complex Arzelà–Ascoli theorem). Let 𝐾 ⊂ C be a compact set and let
( 𝑓𝑛)𝑛∈N be a uniformly bounded sequence of functions 𝑓𝑛 : 𝐾 → C, i.e.

sup
𝑛∈N

sup
𝑧∈𝐾

| 𝑓𝑛 (𝑧) | < ∞.

a. Let 𝑆 ⊂ 𝐾 be a countable set. Show there exists a subsequence ( 𝑓𝑛𝑘 )𝑘∈N such that
the point evaluations ( 𝑓𝑛𝑘 (𝑧))𝑘∈N converge to some value 𝑓𝑧 ∈ C for every 𝑧 ∈ 𝑆.

b. Now assume in addition that ( 𝑓𝑛)𝑛∈N is equicontinuous, i.e. for every 𝜀 > 0 and
every 𝑧 ∈ 𝐾 there exists 𝛿 > 0 such that for every 𝑥 ∈ 𝐾 ,

|𝑥 − 𝑧 | ≤ 𝛿 =⇒ sup
𝑛∈N

| 𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑧) | ≤ 𝜀.

Suppose moreover the set 𝑆 from a. is dense in 𝐾 . Show that the point evaluations
( 𝑓𝑛𝑘 (𝑧))𝑘∈N converge to some value 𝑓𝑧 ∈ C for every 𝑧 ∈ 𝐾 .

c. Retain the setting of b. and define the function 𝑓 : 𝐾 → C by 𝑓 (𝑧) := 𝑓𝑧 . Show
( 𝑓𝑛𝑘 )𝑘∈N converges uniformly to 𝑓 on 𝐾 . Conclude 𝑓 is continuous.

Solution. a. Let us write 𝑆 := {𝑧 𝑗 : 𝑗 ∈ N}. Since the sequence ( 𝑓𝑛 (𝑧1))𝑛∈N is bounded,
the Bolzano–Weierstraß theorem implies the existence of a subsequence (𝑛𝑘,1)𝑘∈N such
that ( 𝑓𝑛𝑘,1 (𝑧1))𝑘∈N converges to some value 𝑓𝑧1 ∈ C. In the second step, we note that the
sequence ( 𝑓𝑛𝑘,1 (𝑧2))𝑘∈N is again bounded; by the same argument as before, we find another
subsequence (𝑛𝑘,2)𝑘∈N of the previous subsequence such that ( 𝑓𝑛𝑘,2 (𝑧2))𝑘∈N converges to
some value 𝑓𝑧2 ∈ C. In the 𝑗-th step, where 𝑗 is larger than two, we choose a subsequence
(𝑛𝑘, 𝑗 )𝑘∈N of all previous subsequences such that ( 𝑓𝑛𝑘, 𝑗 )𝑘∈N converges to some value 𝑓𝑧 𝑗 ∈ C.

It is tempting to finish the argument by induction. However, it is not clear that any
sequence survives this infinite procedure. Hence we use the so-called “diagonal argument”.
For 𝑘 ∈ N we set 𝑛𝑘 := 𝑛𝑘,𝑘 . Then the sequence ( 𝑓𝑛𝑘 (𝑧 𝑗 ))𝑘∈N converges to 𝑓𝑧 𝑗 for every
𝑗 ∈ N, since except for finitely many members, (𝑛𝑘)𝑘∈N is a subsequence of (𝑛𝑘, 𝑗 )𝑘∈N.

b. We claim { 𝑓𝑛𝑘 (𝑧)}𝑘∈N constitutes a Cauchy sequence for every given 𝑧 ∈ 𝐾. To
reduce notation, we skip the subscript 𝑘 . Given any 𝜀 > 0, the hypothesized equicontinuity
implies the existence of 𝛿𝜀,𝑧 > 0 such that

|𝑥 − 𝑧 | ≤ 𝛿𝜀,𝑧 =⇒ sup
𝑛∈N

| 𝑓𝑛 (𝑥) − 𝑓𝑛 (𝑧) | ≤
𝜀

3
. (0.1)

On the other hand, given this number 𝛿𝜀,𝑧 , since 𝑆 is dense in 𝐾 we may and will choose
𝑧∗ ∈ 𝑆 such that |𝑧 − 𝑧∗ | ≤ 𝛿𝜀,𝑧 .

For every 𝑚 ≥ 𝑛, using (0.1) twice and the choice of 𝑧∗ we observe

| 𝑓𝑚 (𝑧) − 𝑓𝑛 (𝑧) | ≤ | 𝑓𝑚 (𝑧) − 𝑓𝑚 (𝑧∗) | + | 𝑓𝑚 (𝑧∗) − 𝑓𝑛 (𝑧∗) | + | 𝑓𝑛 (𝑧∗) − 𝑓𝑛 (𝑧) |

≤ 𝜀

3
+ | 𝑓𝑚 (𝑧∗) − 𝑓𝑛 (𝑧∗) | +

𝜀

3
.

On the other hand, by a. we know ( 𝑓𝑛 (𝑧∗))𝑛∈N converges, hence is a Cauchy sequence. In
other words, there exists 𝑁𝜀 ∈ N such that whenever 𝑚 ≥ 𝑛 ≥ 𝑁𝜀 , we have

| 𝑓𝑚 (𝑧∗) − 𝑓𝑛 (𝑧∗) | ≤
𝜀

3
.

For such choices of 𝑚 and 𝑛, the previous two estimates yield

| 𝑓𝑚 (𝑧) − 𝑓𝑛 (𝑧) | ≤ 𝜀.

Hence ( 𝑓𝑛 (𝑧))𝑛∈N is a Cauchy sequence, as claimed.
c. Given any 𝜀 > 0 and any 𝑧 ∈ 𝐾, we choose 𝛿𝜀,𝑧 satisfying (0.1). Then the family

of discs {𝐵𝛿𝜀,𝑧 (𝑧) : 𝑧 ∈ 𝐾} is an open cover of the compact set 𝐾. By the (topological)
definition of compactness there exists a finite subfamily {𝐵𝛿𝜀,𝑧𝑖 (𝑧𝑖) : 𝑖 = 1, . . . , 𝑁} that still
covers 𝐾 . In other words, for every 𝑧 ∈ 𝐾 there exists 𝑖 = 1, . . . , 𝑛 such that |𝑧 − 𝑧𝑖 | < 𝛿𝜀,𝑧𝑖 .
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Since the number of centers is finite, there exists 𝑛𝜀 ∈ N such that for every 𝑛 ≥ 𝑛𝜀 ,
every 𝑖 = 1, . . . , 𝑁 satisfies

| 𝑓 (𝑧𝑖) − 𝑓𝑛 (𝑧𝑖) | <
𝜀

3
.

Lasty, observe (0.1) also holds for the limit function 𝑓 as we can pass to the limit in the
estimate. Consequently, for 𝑛 ≥ 𝑛𝜀 (independently of the point 𝑧 to follow) we deduce that
for every 𝑧 ∈ 𝐾 , we have

| 𝑓 (𝑧) − 𝑓𝑛 (𝑧) | ≤ | 𝑓 (𝑧) − 𝑓 (𝑧𝑖) | + | 𝑓 (𝑧𝑖) − 𝑓𝑛 (𝑧𝑖) | + | 𝑓𝑛 (𝑧𝑖) − 𝑓𝑛 (𝑧) | ≤
𝜀

3
+ 𝜀

3
+ 𝜀

3
= 𝜀.

The right-hand side is independent of 𝑧; hence, taking the supremum over 𝑧 on the left-hand
side, we obtain uniform convergence of ( 𝑓𝑛)𝑛∈N to 𝑓 .

Since uniform convergence preserves continuity — one can e.g. pass to the limit in (0.1)
— we conclude the proof.


