TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024
SOLUTION SKETCHES TO HOMEWORK 0

MATHIAS BRAUN AND WENHAO ZHAO

Homework 0.1 (Warmup). Give an example of the following objects or show they cannot
exist, respectively.

a. A holomorphic function f: C\ {0} — C such that f'(z) = 1/z.

b. A holomorphic function f: C\ {R <0} — C with f’(z) = 1/z? Here {R < 0}
designates the set of all complex numbers with nonpositive real part.

¢. A domain D c C and a nonconstant holomorphic function f: D — C such that
| f| is constant.

d. A nonconstant holomorphic function f: C — C such that f(n) = 0 for every
neN.

e. A nonconstant holomorphic function f: C — C such that f(i+ 1/n) = 0 for every
n e N.

f. A nonconstant holomorphic function f: C\ {0} — C that is bounded.

Solution. a. No. Otherwise, by the fundamental theorem of calculus and the definition of
complex path integrals we would obtain the contradiction

2
0=f(1)—f(1)=/68 (mf’(z)dz:/o e el idi = 27,

b. Yes. On star-shaped domains every holomorphic function possesses a primitive. One
function is the complex logarithm given by f(z) := log(z) (more precisely, its principal
value with imaginary part in (-7, 7]).

c. No. Such a function would satisfy f(D) c 3B, (0) for some r > 0. In particular, the
set f(D) is not open, which contradicts the open mapping theorem.

d. Yes. Consider the function given by f(z) := sin(nz).

e. No. As the sequence (i + 1/n),eN has the accumulation point i the identity theorem
yields f(z) =0 for every z € C.

f. No. Since the origin O is an isolated singularity, Riemann’s lemma implies it is a
removable singularity, hence f can be extended to 0. However, the resulting extension is
still bounded yet nonconstant, contradicting Liouville’s theorem.

Homework 0.2 (Image of entire functions). Let f: C — C be an non-constant entire
function (i.e. f is holomorphic on the entire complex plane). Show f(C) is dense in C'.

Solution. Assume f(C) is not dense in C. Then there exists zp € C which cannot be
approximated by a sequence in f(C); that is (check this logical step on your own), there
exists § > 0 with | f(z) — zo| > 6 for every z € C. Then the function g: C — C given by

_
f(2) -2

satisfies |g(z)| < 1/6. Hence by Liouville’s theorem g has to be constant, which contradicts
the assumption that f is nonconstant.

g(2) =
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IHint. Argue by contradiction and use Liouville’s theorem for a suitable function.
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Homework 0.3 (Complex Arzela—Ascoli theorem). Let K ¢ C be a compact set and let
(fu)nen be a uniformly bounded sequence of functions f,: K — C, i.e.

sup sup | fn(2)| < 0.
neNzeK
a. Let S C K be a countable set. Show there exists a subsequence ( fy,, )keN such that
the point evaluations ( f;, (z))ren converge to some value f; € C for every z € S.
b. Now assume in addition that (f;;),eN 1S equicontinuous, i.e. for every € > 0 and
every z € K there exists § > 0 such that for every x € K,

x-zl<6 = sup|fulx) - fu(2)] <&
neN

Suppose moreover the set S from a. is dense in K. Show that the point evaluations
(far (2))ken converge to some value f, € C for every z € K.

c. Retain the setting of b. and define the function f: K — C by f(z) := f;. Show
(fnr )ken converges uniformly to f on K. Conclude f is continuous.

Solution. a. Let us write S := {z; : j € N}. Since the sequence (f;,(z1))nen is bounded,
the Bolzano—Weierstrafl theorem implies the existence of a subsequence (nk,1)xen such
that (fy, , (z1))xen converges to some value f;, € C. In the second step, we note that the
sequence (fu, ,(22))keN is again bounded; by the same argument as before, we find another
subsequence (7 2)reN of the previous subsequence such that ( f, ,(z2))keN converges to
some value f,, € C. In the j-th step, where j is larger than two, we choose a subsequence
(nk,j)ken of all previous subsequences such that ( f,,, ;)ken converges to some value f;; € C.

It is tempting to finish the argument by induction. However, it is not clear that any
sequence survives this infinite procedure. Hence we use the so-called “diagonal argument”.
For k € N we set n := ng . Then the sequence (f, (z;))ken converges to f,. for every
J € N, since except for finitely many members, (nx)xen is a subsequence of (ny j)ken.

b. We claim {f,, (z)}xen constitutes a Cauchy sequence for every given z € K. To
reduce notation, we skip the subscript k. Given any £ > 0, the hypothesized equicontinuity
implies the existence of 6, > 0 such that

fod <0 = swplh) - fu@I< 3 (©.1)

On the other hand, given this number ¢ ;, since S is dense in K we may and will choose
Zz* € Ssuch that [z — 2| < ¢ .
For every m > n, using (0.1) twice and the choice of z* we observe

(D) = Fu@] < (D) = Fin+ () = Sl + 1) = Fa2)]
e ICO RN ACHI R

IA

On the other hand, by a. we know ( f,,(z")),en converges, hence is a Cauchy sequence. In
other words, there exists Nz € N such that whenever m > n > N, we have

* * &
) = ful@) < 5
For such choices of m and n, the previous two estimates yield

|fm(2) = fu(2)| < €.

Hence (f,,(2))nen is a Cauchy sequence, as claimed.

c. Given any € > 0 and any z € K, we choose 6., satisfying (0.1). Then the family
of discs {Bs, _(z) : z € K} is an open cover of the compact set K. By the (topological)
definition of compactness there exists a finite subfamily {Bs, _ (z;) : i =1,..., N} that still
covers K. In other words, for every z € K there exists i = 1,...,n such that |z — z;| < 0z ;.
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Since the number of centers is finite, there exists n, € N such that for every n > ng,
everyi=1,..., N satisfies

@) = fulz)] < 5.

Lasty, observe (0.1) also holds for the limit function f as we can pass to the limit in the
estimate. Consequently, for n > n. (independently of the point z to follow) we deduce that

for every z € K, we have
e € ¢
IF (@) = fa@I < 1f(@) = f@l +1f (@) = fu(z)| + 1 u(2) = fu(D < 5+ 5+ 5 =
The right-hand side is independent of z; hence, taking the supremum over z on the left-hand
side, we obtain uniform convergence of (fy)nenN to f.
Since uniform convergence preserves continuity — one can e.g. pass to the limit in (0.1)

— we conclude the proof.



